

SCREENING OF ANTI-HYPERLIPIDEMIC ACTIVITY OF METHANOLIC EXTRACT OF *LAGERSTROEMIA SPECIOSA* (LINN.) PERS. LEAVES

Ms. Mobina Begum, Ms. Safiya Begum, Mr. Rahul Chakraborty

Assistant professor^{1,3} Associate professor²

Department of Pharmaceutics,

Global College of Pharmacy, Hyderabad. Chilkur (V), Moinabad (M), Telangana- 501504.

ABSTRACT: The purpose of this research was to examine the hypolipidemic effects of *Lagerstroemia speciosa* Linn's methanolic leaf extract. Rat models of hyperlipidemia caused by a high-fat diet were used to examine the effects of plant extract. The rats were given 250 mg/kg and 500 mg/kg of *Lagerstroemia speciosa* Linn. leaf methanolic extracts daily for a week. The findings suggest that *Lagerstroemia speciosa* Linn. methanolic leaf extract (LMLS & HMLS) had strong antihyperlipidemic effects.activity.

Keywords: Hypolipidemic activity, *Lagerstroemia speciosa* Linn., Methanolic extract

INTRODUCTION: Obesity, hypertension, coronary heart disease, ischemic cerebrovascular illness, and atherosclerosis are all made more likely by hyperlipidemia 1. Furthermore, diabetes might cause hyperlipidemia as a side consequence. There are a lot of synthetic medications on the market, but none of them work for all lipoprotein diseases, and they all come with side effects. Because they are safer, more effective, and less expensive than synthetic alternatives, natural products have been used for generations to treat a wide range of illnesses. The Lythraceae 2–5 family includes *Lagerstroemia Speciosa* Linn. A medicinal tree with a long history of usage in the treatment of hyperglycemia 3, 5. Known most often in Telugu as Sogasula chettu. The anti-diabetic, antibacterial, antiviral, anti-inflammatory, anti-inflammatory, anti-alcohol, and anti-inflammatory properties of *Lagerstroemia Speciosa* have been studied.

2, 4, anti-inflammatory, anti-diarrhea, and anti-

nociceptive

2. Xanthine oxidase inhibition 2, 4. cytotoxic 2, 4. anti-obesity 2, 4. 6, anti-fibrotic 4. The purpose of this research was to examine the antihyperlipidemic effects of *Lagerstroemia Speciosa* Linn's methanolic leaf extract.

MATERIALS AND METHODS:

Plant Materials and Chemicals: The fresh leaves of the *Lagerstroemia Speciosa* Linn. collected at our college premises, Vadlamudi, Guntur and was authentified by botanist of Acharya Nagarjuna University, Guntur. Atorvastatin was obtained as gift sample from Cipla Kurkumbh, Pune. Diagnostic kits for estimation of cholesterol (Excel Diagnostics) and triglycerides (Excel Diagnostics) were used. High cholesterol diet^{7, 9, 10} was prepared in the college laboratory.

Preparation of Extracts: The leaves of the plant were dried in shade at room temperature and then coarse powder was prepared. Methanolic extract prepared by hot continuous extraction method. The powdered material of plant of *Lagerstroemia Speciosa* was evenly packed in Soxhlet extractor for extraction for 6 hours with methanol and the temperature was maintained on the electric heating mantle with thermostat control. The extract was concentrated by distillation and percentage yield was calculated.

Preliminary Phytochemical Screening: The conventional chemical tests were carried for the methanolic extract of *Lagerstroemia Speciosa* to identify the presence of various phytoconstituents.

***In vivo* Studies:**

Experimental of Animals: Either sex of the Wistar Albino rats weighing between 150-200gm was procured from the Mahaveer Enterprises, Hyderabad, India. The animals were kept under standard environmental conditions of room temperature and 12 h light and dark cycles. The animals were housed in the colony cages (three rats per cage) and provided feed and water *ad libitum*. Research study was carried out in accordance with the guidelines of Institutional Animal Committee. The study was conducted after obtaining Ethical committee clearance from the Institutional Animal Ethical Committee. The protocol number is 005/IAEC/VPC/2017.

Preparation of Doses: In the present study, two doses of the *Lagerstroemia Speciosa* leaf extract was prepared as 250 mg (LMLS) and 500 mg/kg (HMLS) suspended in 1% CMC and given by oral gavage.

Preparation of High Fat Diet: Animal food pellets were crushed with the help of motor and pestle and grinded into fine powder in mixer grinder. To the fine powder 3% of cholesterol, 1% of cholic acid, 30% of sucrose and 10% of coconut oil were added and mixed well.

TABLE 1: PRELIMINARY PHYTOCHEMICAL SCREENING OF THE METHANOLIC LEAF EXTRACT OF *LAGERSTROEMIA SPECIOSA*

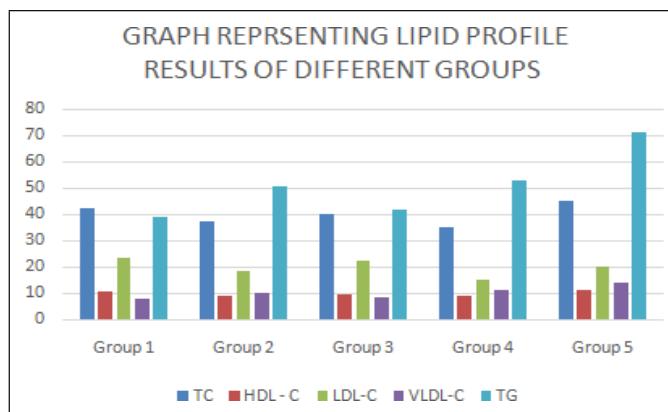
S. no	Name of the constituent	Methanolic extract
1	Tannins	++
2	Saponins	+
3	Terpenoids	+++
4	Flavonoids	++
5	Glycosides	-
6	Alkaloids	+
7	Phytosterols	+

Note: Absence (-), Presence: Mild (+), Moderate (++) Potent (+++)

TABLE 2: EFFECT OF *LAGERSTROEMIA SPECIOSA* LEAF EXTRACT ON LIPID PARAMETER LEVELS IN FAT DIET INDUCED HYPERLIPIDEMIC RATS

S. no	Groups	Serum lipid Parameter (%)				
		Total Cholesterol	Total Triglycerides	HDL-C	LDL-C	VLDL-C
I	LMLS (250mg/kg)	42	39	11	24	08
II	HMLS (500mg/kg)	37	50	09	18	10
II	Atorvastatin	40	42	10	22	08
I	(10mg/kg)					
I	Normal	45	71	11	20	14
V	Control					
V	Hyperlipide mic Control	35	53	09	15	11

(10mg/kg) and high fat diet, group-4 was administered with vehicle and fed with normal diet, served as normal control and group-5 was fed with fat diet and kept as hyperlipidemic control.


Biochemical Assay: Under mild ether anaesthesia, blood samples were collected by retro-orbital puncture at the end of the experiment. The collected samples were centrifuged for 15 minutes at 2000rpm to get the serum. Then the serum samples were analysed by using diagnostic kits for serum Total Cholesterol, Triglycerides, HDL-C, LDL-C and VLDL-C.

Statistical Analysis: Results were analysed by one way ANOVA, followed by Dunnett's t-test and 'P' value less than 0.05 were taken as significant.

RESULTS: Dried and powdered leaves of *Lagerstroemia Speciosa* was subjected to soxhlet extraction with 95% methanol and yielded 8% w/w. Terpenoids, tannins and saponins were identified in preliminary phytochemical tests (**Table 1**).

Values are statistically significant at $^*P < 0.05$ using one way ANOVA by t-test

Treatment with LMLS (250mg/kg) and HMLS (500mg/kg) for one week successfully reduced the animal body weights and also prevented the elevated serum cholesterol, triglycerides, LDL-C, VLDL-C in fat diet model (**Table 2**) and (**Graph1**).

GRAPH 1: LIPID PROFILE RESULTS OF EXPERIMENTAL ANIMALS

DISCUSSION: Hyperlipidemia is a major risk factor for atherosclerotic coronary artery disease. It has been well established that nutrition plays an important role in aetiology of hyperlipidemias. High fat diet has been often used to elevate serum cholesterol to assess hypercholesterolemia in various animals. Based on this information, the present study was done on animal models fed with high fat diet to screen the antihyperlipidemic activity. From the obtained results (**Table 2**), it was observed that maximum activity was reported by the HMLS (500mg/kg) and considerable activity was found with the LMLS (250mg/kg) when compared with that of the standard drug (Atorvastatin). Animals treated with Atorvastatin (10mg/kg) showed marked reduction in all serum lipoproteins.

CONCLUSION: Present study reveals that methanolic leaf extract of *Lagerstroemia Speciosa* (HMLS) effectively reduced the serum cholesterol, triglycerides, LDL-C and VLDL-C than that of the standard drug Atorvastatin. Whereas, LMLS showed the similar or equal

antihyperlipidemic activity to that of the standard drug. These results proving the antihyperlipidemic activity of the methanolic extract of the *Lagerstroemia Speciosa* leaves.

REFERENCES:

1. The International Journal of Pharmacological Research published an article by Pankti PD and Pragnesh VP titled "Anti-hyperlipidemic activity of *Tephrosia purpurea* plant extracts in poloxamer 407 induced hyperlipidemic rats" in 2014 with the DOI: 4.4.193.
2. A Review of *Lagerstroemia* Species by Munish PAL, Deepika T., and Chandana M. Publication date: 2016 Jan 1; volume 6, issue 1, pages 95–98.
3. *Lagerstroemia speciosa*: A recent review by Mohit K, Chakraborty GS, and Avijit M. Publication date: 2013; volume: 5, issue: 3, pages 906-909.
4. *Lagerstroemia speciosa*: A Natural Remedy for Diabetes; Phytochemistry and Pharmacology by Eric WCC, Lea NT, and Siu KW. The citation is from the International Journal of Herbal Medicine, volume 2, issue 2, pages 100 in 2014.
5. Chemical components from *Lagerstroemia speciosa* L. leaves: A study by Guang-Hui H, Qin Z, Jun-Li L, Cheng C, Dou-Dou H, Wan-Sheng C, and Lian-Na S. Published in Biochemical Systematics and Ecology (2011), volume 51, pages 109–112.
6. The antiobesity action of extracts from *Lagerstroemia speciosa* L. leaves on female KK-AY mice was studied by Yuko S., Tomonori U., Masao U., Kazuhiko H., and Takami K. in the Journal of Nutritional Science and Vitaminology in 1999, volume 45, pages 791-795.
7. The antihyperlipidemic action of *Cinnamomum tamala* was investigated by Varsha, Shubhangi, Mangesh, and Naikwade. Hyperlipidemia caused by a High-Cholesterol Diet: International Journal of Pharmaceutical Technology and Research, 2010; 2(4): 2517-2521.
8. "Antiobesity and hypolipidemic activity of *Moringa oleifera* leaves against High Fat diet-Induced Obesity in rats" (Advances in Biology 2014), written by Sourav B, Singh GS, and Sharma R.
9. International Journal of Research in Pharmacy and Chemistry, 2013; 3(3): 708-711. 9. Desu BSR and Saileela C: Anti-Hyperlipidemic Activity of Methanolic Extract of *Rhinacanthus Nasutus*.
10. In 2008, Dubey and Pande published an article in the International Journal of Green Pharmacy on the antihyperlipidemic effects of *Sphaeranthus indicus* on rats with atherogenic diet-induced hyperlipidemia.

